Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Methods Mol Biol ; 2777: 35-49, 2024.
Article En | MEDLINE | ID: mdl-38478334

Over the past 20 years, there has been a lot of interest in the study and investigation of cancer stem cells (CSCs) or tumor-initiating cells (TICs). CSCs are rare, dormant cells and able to self-renew and maintain tumor development and heterogeneity. A new age of basic and clinical cancer research, reclassification of human tumors, and the development of novel therapeutic approaches will undoubtedly result from a better knowledge of CSCs. In order to develop effective and therapeutic strategies to treat cancer, it is crucial to understand the basic characteristics of CSCs, their importance to cancer therapy, and methodologies to isolate, detect, and characterize them. Here, we outline the main methods and protocols to identify, isolate, and culture CSCs from primary tumors.


Neoplasms , Humans , Neoplasms/pathology , Neoplastic Stem Cells/pathology
2.
Methods Mol Biol ; 2777: 83-89, 2024.
Article En | MEDLINE | ID: mdl-38478337

Cancer stem cells (CSCs) are a small tumor cell subpopulation, driving cancer initiation, progression, multidrug resistance, and metastasis. Several methods are used to detect and isolate CSCs by flow cytometry. Among these, measurement of aldehyde dehydrogenase (ALDH) activity within the cell is an assay widely used to identify and isolate CSCs from different types of solid tumors. The aldehyde dehydrogenase (ALDH) is a polymorphic enzyme responsible for the oxidation of aldehydes to carboxylic acids, overexpressed both in normal and cancer stem cells. In this chapter, it is described how CSCs are detected and isolated by using ALDH activity assay.


Neoplasms , Neoplastic Stem Cells , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Aldehyde Dehydrogenase/metabolism , Flow Cytometry , Neoplasms/pathology
3.
Curr Opin Pharmacol ; 69: 102348, 2023 04.
Article En | MEDLINE | ID: mdl-36842387

Gastro-esophageal tumors constitute a big health problem. Treatment options still mainly rely on chemotherapy, and apart from human epidermal growth factor receptor 2 positive and microsatellite instable/Epstein-Barr Virus disease, there are no molecularly guided options. Therefore, despite the large number of identified molecular alterations, precision medicine is still far from the clinic. In this context, the recently developed technology of patient-derived organoids (PDOs) could offer the chance to accelerate drug development and biomarker discovery. Indeed, PDOs are 3D primary cultures that were shown to reproduce patient's tumor characteristics. Moreover, several reports indicated that PDOs can replicate patient's response to a given drug; therefore, they are one of the most promising tools for functional precision medicine.


Epstein-Barr Virus Infections , Esophageal Neoplasms , Humans , Precision Medicine , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human , Esophageal Neoplasms/pathology , Organoids/metabolism
4.
Cells ; 11(23)2022 Dec 06.
Article En | MEDLINE | ID: mdl-36497199

Type 1 diabetes (T1D) is an autoimmune disease with immune cells' islet infiltration (called "insulitis"), which leads to beta cell loss. Despite being the critical element of T1D occurrence and pathogenesis, insulitis is often present in a limited percentage of islets, also at diagnosis. Therefore, it is needed to define reproducible methods to detect insulitis and beta-cell decline, to allow accurate and early diagnosis and to monitor therapy. However, this goal is still far due to the morphological aspect of islet microvasculature, which is rather dense and rich, and is considerably rearranged during insulitis. More studies on microvasculature are required to understand if contrast-enhanced ultrasound sonography measurements of pancreatic blood-flow dynamics may provide a clinically deployable predictive marker to predict disease progression and therapeutic reversal in pre-symptomatic T1D patients. Therefore, it is needed to clarify the relation between insulitis and the dynamics of ß cell loss and with coexisting mechanisms of dysfunction, according to clinical stage, as well as the micro vessels' dynamics and microvasculature reorganization. Moreover, the ideal cell-based therapy of T1D should start from an early diagnosis allowing a sufficient isolation of specific Procr+ progenitors, followed by the generation and expansion of islet organoids, which could be transplanted coupled to an immune-regulatory therapy which will permit the maintenance of pancreatic islets and an effective and long-lasting insulitis reversal.


Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Pancreatic Diseases , Humans , Diabetes Mellitus, Type 1/metabolism , Pancreas/pathology , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Stem Cells/metabolism
6.
Cells ; 10(11)2021 10 26.
Article En | MEDLINE | ID: mdl-34831122

BACKGROUND: Hyaluronans exist in different forms, accordingly with molecular weight and degree of crosslinking. Here, we tested the capability to induce osteogenic differentiation in hDPSCs (human dental pulp stem cells) of three hyaluronans forms: linear pharmaceutical-grade hyaluronans at high and (HHA) low molecular weight (LHA) and hybrid cooperative complexes (HCC), containing both sizes. METHODS: hDPSCs were treated with HHA, LHA, HCC for 7, 14 and 21 days. The effects of hyaluronans on osteogenic differentiation were evaluated by qRT-PCR and WB of osteogenic markers and by Alizarin Red S staining. To identify the involved pathway, CD44 was analyzed by immunofluorescence, and YAP/TAZ expression was measured by qRT-PCR. Moreover, YAP/TAZ inhibitor-1 was used, and the loss of function of YAP/TAZ was evaluated by qRT-PCR, WB and immunofluorescence. RESULTS: We showed that all hyaluronans improves osteogenesis. Among these, HCC is the main inducer of osteogenesis, along with overexpression of bone related markers and upregulating CD44. We also found that this biological process is subordinate to the activation of YAP/TAZ pathway. CONCLUSIONS: We found that HA's molecular weight can have a relevant impact on HA performance for bone regeneration, and we unveil a new molecular mechanism by which HA acts on stem cells.


Bone and Bones/cytology , Cell Differentiation , Dental Pulp/cytology , Hyaluronic Acid/pharmacology , Signal Transduction , Stem Cells/cytology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/metabolism , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Separation , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Hyaluronan Receptors/metabolism , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Osteopontin/genetics , Osteopontin/metabolism , Stem Cells/drug effects , Stem Cells/metabolism
7.
Regen Biomater ; 8(3): rbaa052, 2021 Jun.
Article En | MEDLINE | ID: mdl-34211725

Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering, and proved high potential in bone regeneration. This study aimed to evaluate, for the first time, the combination of enzymatically crosslinked gelatin with hyaluronan and the newly developed biotechnological chondroitin in enhancing osteogenic potential. Gelatin enzymatic crosslinking was carried out in the presence of hyaluronan or of a hyaluronan-chondroitin mixture, obtaining semi-interpenetrating gels. The latter proved lower swelling extent and improved stiffness compared to the gelatin matrix alone, whilst maintaining high stability. The heteropolysaccharides were retained for 30 days in the hydrogels, thus influencing cell response over this period. To evaluate the effect of hydrogel composition on bone regeneration, materials were seeded with human dental pulp stem cells and osteogenic differentiation was assessed. The expression of osteocalcin (OC) and osteopontin (OPN), both at gene and protein level, was evaluated at 7, 15 and 30 days of culture. Scanning electron microscopy (SEM) and two-photon microscope observations were performed to assess bone-like extracellular matrix (ECM) deposition and to observe the cell penetration depth. In the presence of the heteropolysaccharides, OC and OPN expression was upregulated and a higher degree of calcified matrix formation was observed. Combination with hyaluronan and chondroitin improved both the biophysical properties and the biological response of enzymatically crosslinked gelatin, fastening bone deposition.

8.
Materials (Basel) ; 14(13)2021 Jul 03.
Article En | MEDLINE | ID: mdl-34279306

In oral implantology, the success and persistence of dental implants over time are guaranteed by the bone formation around the implant fixture and by the integrity of the peri-implant mucosa seal, which adheres to the abutment and becomes a barrier that hinders bacterial penetration and colonization close to the outer parts of the implant. Research is constantly engaged in looking for substances to coat the titanium surface that guarantees the formation and persistence of the peri-implant bone, as well as the integrity of the mucous perimeter surrounding the implant crown. The present study aimed to evaluate in vitro the effects of a titanium surface coated with polylysine homopolymers on the cell growth of dental pulp stem cells and keratinocytes to establish the potential clinical application. The results reported an increase in cell growth for both cellular types cultured with polylysine-coated titanium compared to cultures without titanium and those without coating. These preliminary data suggest the usefulness of polylysine coating not only for enhancing osteoinduction but also to speed the post-surgery mucosal healings, guarantee appropriate peri-implant epithelial seals, and protect the fixture against bacterial penetration, which is responsible for compromising the implant survival.

9.
Biomed Res Int ; 2021: 3582342, 2021.
Article En | MEDLINE | ID: mdl-33834063

In the field of biology and medicine, one hears often about stem cells and their potential. The dental implant new surfaces, subjected to specific treatments, perform better and allow for quicker healing times and better clinical performance. The purpose of this study is to evaluate from a biological point of view the interaction and cytotoxicity between stem cells derived from dental pulp (DPSCs) and titanium surfaces. Through the creation of complex cells/implant, this study is aimed at analyzing the cytotoxicity of dental implant surfaces (Myth (Maipek Manufacturer Industrial Care, Naples, Italy)) and the adhesion capacity of cells on them and at considering the essential factors for implant healing such as osteoinduction and vasculogenesis. These parameters are pointed out through histology (3D cell culture), immunofluorescence, proliferation assays, scanning electron microscopy, and PCR investigations. The results of the dental implant surface and its interaction with the DPSCs are encouraging, obtaining results increasing the mineralization of the tissues. The knowledge of this type of interaction, highlighting its chemical and biological features, is certainly also an excellent starting point for the development of even more performing surfaces for having better healing in the oral surgical procedures related to dental implant positioning.


Dental Implants , Dental Pulp/cytology , Stem Cells/cytology , Bone Matrix/drug effects , Bone Matrix/metabolism , Cell Adhesion/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Humans , Neovascularization, Physiologic/drug effects , Osseointegration/drug effects , Osteocalcin/metabolism , Stem Cells/drug effects , Stem Cells/ultrastructure , Surface Properties , Vascular Endothelial Growth Factor A/metabolism
10.
Cell Death Dis ; 11(10): 850, 2020 10 13.
Article En | MEDLINE | ID: mdl-33051434

The ß2-Adrenergic receptor (ß2-AR) is a G protein-coupled receptor (GPCR), involved in the development of many cancers, among which HNSCC. In this contest, ß2-AR signaling interacts with different pathways, such as PI3K and MAPK, commonly activated by TK receptors. For this reason, TK blockade is one of the most adopted therapeutic strategies in HNSCC patients. In our study we investigated the effects of the ß2-AR blocking in HNSCC cell lines, using the selective inhibitor ICI118,551 (ICI), in combination with the MAPK inhibitor U0126. We found that ICI leads to the blocking of p38 and NF-kB oncogenic pathways, strongly affecting also the ERK and PI3K pathways. Cotreatment with U0126 displays a synergic effect on cell viability and pathway alteration. Interestingly, we found that the ß2-AR blockade affects Nrf2-Keap1 stability and its nuclear translocation leading to a drastic ROS increase and oxidative stress. Our results are confirmed by a TCGA dataset analysis, showing that NFE2L2 gene is commonly overexpressed in HNSC, and correlated with a lower survival rate. In our system, the PI3K pathway inhibition culminated in the blocking of pro-survival autophagy, a mechanism normally adopted by cancer cells to became less responsive to the therapies. The mTOR expression, commonly upregulated in HNSC, was reduced in patients with disease-recurrence. It is well known that mTOR has a strong autophagy inhibition effect, therefore its downregulation promoted pro-survival autophagy, with a related increase recurrence rate. Our findings highlight for the first time the key role of ß2-AR and related pathway in HNSCC cell proliferation and drug resistance, proposing it as a valuable therapeutic molecular target.


Adrenergic beta-2 Receptor Antagonists/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Head and Neck Neoplasms/drug therapy , NF-E2-Related Factor 2/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Adrenergic, beta-2/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Adrenergic beta-2 Receptor Antagonists/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Propanolamines/administration & dosage , Propanolamines/pharmacology , Protein Kinase Inhibitors/administration & dosage , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
11.
Cancer Treat Rev ; 88: 102043, 2020 Aug.
Article En | MEDLINE | ID: mdl-32505806

Autophagy is a self-degradative cellular process, involved in stress response such as starvation, hypoxia, and oxidative stress. This mechanism balances macro-molecule recycling to regulate cell homeostasis. In cancer, autophagy play a role in the development and progression, while several studies describe it as one of the key processes in drug resistance. In the last years, in addition to standard anti-cancer treatments such as chemotherapies and irradiation, targeted therapy became one of the most adopted strategies in clinical practices, mainly due to high specificity and reduced side effects. However, similar to standard treatments, drug resistance is the main challenge in most patients. Here, we summarize recent studies that investigated the role of autophagy in drug resistance after targeted therapy in different types of cancers. We highlight positive results and limitations of pre-clinical and clinical studies in which autophagy inhibitors are used in combination with targeted therapies.


Drug Resistance, Neoplasm , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Autophagy/drug effects , Autophagy/physiology , Humans , Immunotoxins/pharmacology , Molecular Targeted Therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology
12.
J Exp Clin Cancer Res ; 38(1): 160, 2019 Apr 12.
Article En | MEDLINE | ID: mdl-30987650

BACKGROUND: Glucose-6-phospate dehydrogenase (G6PD) is the limiting enzyme of the pentose phosphate pathway (PPP) correlated to cancer progression and drug resistance. We previously showed that G6PD inhibition leads to Endoplasmic Reticulum (ER) stress often associated to autophagy deregulation. The latter can be induced by target-based agents such as Lapatinib, an anti-HER2 tyrosine kinase inhibitor (TKI) largely used in breast cancer treatment. METHODS: Here we investigate whether G6PD inhibition causes autophagy alteration, which can potentiate Lapatinib effect on cancer cells. Immunofluorescence and flow cytometry for LC3B and lysosomes tracker were used to study autophagy in cells treated with lapatinib and/or G6PD inhibitors (polydatin). Immunoblots for LC3B and p62 were performed to confirm autophagy flux analyses together with puncta and colocalization studies. We generated a cell line overexpressing G6PD and performed synergism studies on cell growth inhibition induced by Lapatinib and Polydatin using the median effect by Chou-Talay. Synergism studies were additionally validated with apoptosis analysis by annexin V/PI staining in the presence or absence of autophagy blockers. RESULTS: We found that the inhibition of G6PD induced endoplasmic reticulum stress, which was responsible for the deregulation of autophagy flux. Indeed, G6PD blockade caused a consistent increase of autophagosomes formation independently from mTOR status. Cells engineered to overexpress G6PD became resilient to autophagy and resistant to lapatinib. On the other hand, G6PD inhibition synergistically increased lapatinib-induced cytotoxic effect on cancer cells, while autophagy blockade abolished this effect. Finally, in silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients. CONCLUSIONS: These results point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophagy could be used to reinforce TKI efficacy in cancer treatment.


Antineoplastic Agents/pharmacology , Autophagy/drug effects , Breast Neoplasms/metabolism , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Autophagy/genetics , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Female , Gene Expression , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Humans , Lapatinib/pharmacology , Prognosis , Recurrence
13.
Cells ; 8(3)2019 03 05.
Article En | MEDLINE | ID: mdl-30841579

Epigenetic regulation has been considered an important mechanism for influencing stem cell differentiation. In particular, histone deacetylases (HDACs) have been shown to play a role in the osteoblast differentiation of mesenchymal stem cells (MSCs). In this study, the effect of the HDAC inhibitor, valproic acid (VPA), on bone formation in vivo by MSCs was determined. Surprisingly, VPA treatment, unlike other HDAC inhibitors, produced a well-organized lamellar bone tissue when MSCs⁻collagen sponge constructs were implanted subcutaneously into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, although a decrease of osteocalcin (OC) expression was observed. Consequently, we decided to investigate the molecular mechanisms by which VPA exerts such effects on MSCs. We identified the glucocorticoid receptor (GR) as being responsible for that downregulation, and suggested a correlation between GR and HDAC2 inhibition after VPA treatment, as evidenced by HDAC2 knockdown. Furthermore, using co-immunoprecipitation analysis, we showed for the first time in the cytoplasm, binding between GR and HDAC2. Additionally, chromatin immunoprecipitation (ChIP) assays confirmed the role of GR in OC downregulation, showing recruitment of GR to the nGRE element in the OC promoter. In conclusion, our results highlight the existence of a cross-talk between GR and HDAC2, providing a mechanistic explanation for the influence of the HDAC inhibitor (namely VPA) on osteogenic differentiation in MSCs. Our findings open new directions in targeted therapies, and offer new insights into the regulation of MSC fate determination.


Cytoplasm/metabolism , Histone Deacetylase 2/metabolism , Mesenchymal Stem Cells/metabolism , Osteocalcin/metabolism , Receptors, Glucocorticoid/metabolism , Valproic Acid/pharmacology , Adult , Biomarkers/metabolism , Cytoplasm/drug effects , Dental Pulp/cytology , Female , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Mesenchymal Stem Cells/drug effects , Mifepristone/pharmacology , Osteocalcin/genetics , Osteogenesis/drug effects , Osteogenesis/genetics , Prosthesis Implantation , Protein Binding/drug effects , Response Elements/genetics , Young Adult
14.
J Exp Clin Cancer Res ; 37(1): 296, 2018 Dec 03.
Article En | MEDLINE | ID: mdl-30509303

BACKGROUND: Cancer stem cells (CSCs) play a key role in cancer initiation, progression and chemoresistance. Epigenetic alterations have been identified as prominent factors that contribute to the CSCs phenotype. Here, we investigated the effects of the HDAC inhibitor valproic acid (VPA) and the demethylating agent, 5'azacytidine (DAC) on the stem phenotype of MG63 and Saos2 osteosarcoma cell lines. METHODS: Saos2 and MG63 cells were treated with DAC and VPA, alone and in combination. Untreated and treated cells were examined for stemness phenotype by cytometry and real-time PCR. Sarcospheres and colonies formation were also evaluated. Moreover, histone modification and methylation were tested by flow cytomery and western blotting. HDAC2 depleted cells were examined for stemness phenotype and their ability to generate tumors in NOD/SCID IL2R-gamma-0 (NSG) mice. HDAC2 expression on human osteosarcoma tissues was evaluated. RESULTS: We found that DAC and VPA induce an increased expression of stem markers including CD133, OCT4, SOX2 and NANOG, and an increased ability in sarcospheres and colonies formation efficiency. Interestingly, we showed that DAC and VPA treatment decreased repressive histone markers, while increased the active ones. These histone modifications were also associated with an increase of acetylation of histones H3, a decrease of DNA global methylation, HDAC2 and DNMT3a. Furthermore, HDAC2 silenced-MG63 and Saos2 cells acquired a stem phenotype, and promoted in vivo tumorigenesis. In human osteosarcoma tissues, HDAC2 was strongly expressed in nucleus. CONCLUSIONS: Collectively, our results suggest that VPA and DAC induce an expansion of osteosarcoma CSCs, and we report for the first time that HDAC2 is a key factor regulating both CSCs phenotype and in vivo cancer growth. In conclusion, we have identified HDAC2 as a potential therapeutic target in human osteosarcoma treatment.


Bone Neoplasms/enzymology , Histone Deacetylase 2/deficiency , Neoplastic Stem Cells/enzymology , Osteosarcoma/enzymology , Animals , Azacitidine/pharmacology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , DNA Methylation , Heterografts , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 2/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , Transfection , Valproic Acid/pharmacology
15.
Front Physiol ; 9: 547, 2018.
Article En | MEDLINE | ID: mdl-29892229

Human dental pulp is considered an interesting source of adult stem cells, due to the low-invasive isolation procedures, high content of stem cells and its peculiar embryological origin from neural crest. Based on our previous findings, a dental pulp stem cells sub-population, enriched for the expression of STRO-1, c-Kit, and CD34, showed a higher neural commitment. However, their biological properties were compromised when cells were cultured in adherent standard conditions. The aim of this study was to evaluate the ability of three dimensional floating spheres to preserve embryological and biological properties of this sub-population. In addition, the expression of the inwardly rectifying potassium channel Kir4.1, Fas and FasL was investigated in 3D-sphere derived hDPSCs. Our data showed that 3D sphere-derived hDPSCs maintained their fibroblast-like morphology, preserved stemness markers expression and proliferative capability. The expression of neural crest markers and Kir4.1 was observed in undifferentiated hDPSCs, furthermore this culture system also preserved hDPSCs differentiation potential. The expression of Fas and FasL was observed in undifferentiated hDPSCs derived from sphere culture and, noteworthy, FasL was maintained even after the neurogenic commitment was reached, with a significantly higher expression compared to osteogenic and myogenic commitments. These data demonstrate that 3D sphere culture provides a favorable micro-environment for neural crest-derived hDPSCs to preserve their biological properties.

16.
Cell Death Dis ; 9(5): 572, 2018 05 01.
Article En | MEDLINE | ID: mdl-29760380

Pentose phosphate pathway (PPP) is a major glucose metabolism pathway, which has a fundamental role in cancer growth and metastasis. Even though PPP blockade has been pointed out as a very promising strategy against cancer, effective anti-PPP agents are not still available in the clinical setting. Here we demonstrate that the natural molecule polydatin inhibits glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP. Polydatin blocks G6PD causing accumulation of reactive oxygen species and strong increase of endoplasmic reticulum stress. These effects are followed by cell cycle block in S phase, an about 50% of apoptosis, and 60% inhibition of invasion in vitro. Accordingly, in an orthotopic metastatic model of tongue cancer, 100 mg/kg polydatin induced an about 30% tumor size reduction with an about 80% inhibition of lymph node metastases and 50% reduction of lymph node size (p < 0.005). Polydatin is not toxic in animals up to a dose of 200 mg/kg and a phase II clinical trial shows that it is also well tolerated in humans (40 mg twice a day for 90 days). Thus, polydatin may be used as a reliable tool to limit human cancer growth and metastatic spread.


Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosides/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/enzymology , Pentose Phosphate Pathway/drug effects , S Phase Cell Cycle Checkpoints/drug effects , Stilbenes/pharmacology , Animals , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Humans , MCF-7 Cells , Male , Mice, Nude , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , S Phase Cell Cycle Checkpoints/genetics , Xenograft Model Antitumor Assays
17.
Cell Physiol Biochem ; 44(3): 1078-1092, 2017.
Article En | MEDLINE | ID: mdl-29179206

BACKGROUND/AIMS: Adipose-derived Stem Cells (ASCs) are used in Regenerative Medicine, including fat grafting, recovery from local tissue ischemia and scar remodeling. The aim of this study was to evaluate hyaluronan based gel effects on ASCs differentiation and proliferation. METHODS: Comparative analyses using high (H) and low (L) molecular weight hyaluronans (HA), hyaluronan hybrid cooperative complexes (HCCs), and high and medium cross-linked hyaluronan based dermal fillers were performed. Human ASCs were characterized by flow cytometry using CD90, CD34, CD105, CD29, CD31, CD45 and CD14 markers. Then, cells were treated for 7, 14 and 21 days with hyaluronans. Adipogenic differentiation was evaluated using Oil red-O staining and expression of leptin, PPAR-γ, LPL and adiponectin using qRT-PCR. Adiponectin was analyzed by immunofluorescence, PPAR-γ and adiponectin were analyzed using western blotting. ELISA assays for adiponectin and leptin were performed. RESULTS: HCCs highly affected ASCs differentiation by up-regulating adipogenic genes and related proteins, that were also secreted in the culture medium. H-HA and L-HA induced a lower level of ASCs differentiation. CONCLUSION: HCCs-based formulations clearly enhance adipogenic differentiation and proliferation, when compared with linear HA and cross-linked hyaluronans. Injection of HCCs in subdermal fat compartment may recruit and differentiate stem cells in adipocytes, and considerably improving fat tissue renewal.


Cell Differentiation/drug effects , Hyaluronic Acid/pharmacology , Adipogenesis/drug effects , Adiponectin/analysis , Adiponectin/metabolism , Adipose Tissue/cytology , Adult , Antigens, CD/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Humans , Hyaluronic Acid/chemistry , Leptin/analysis , Leptin/metabolism , Lipoprotein Lipase/metabolism , Microscopy, Fluorescence , Middle Aged , Molecular Weight , PPAR gamma/metabolism , Phenotype , Stem Cells/cytology , Stem Cells/metabolism , Surgery, Plastic
18.
Clin Sci (Lond) ; 131(8): 699-713, 2017 Apr 25.
Article En | MEDLINE | ID: mdl-28209631

Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells that have been successfully used in human bone tissue engineering. To establish whether these cells can lead to a bone tissue ready to be grafted, we checked DPSCs for their osteogenic and angiogenic differentiation capabilities with the specific aim of obtaining a new tool for bone transplantation. Therefore, hDPSCs were specifically selected from the stromal-vascular dental pulp fraction, using appropriate markers, and cultured. Growth curves, expression of bone-related markers, calcification and angiogenesis as well as an in vivo transplantation assay were performed. We found that hDPSCs proliferate, differentiate into osteoblasts and express high levels of angiogenic genes, such as vascular endothelial growth factor and platelet-derived growth factor A. Human DPSCs, after 40 days of culture, give rise to a 3D structure resembling a woven fibrous bone. These woven bone (WB) samples were analysed using classic histology and synchrotron-based, X-ray phase-contrast microtomography and holotomography. WB showed histological and attractive physical qualities of bone with few areas of mineralization and neovessels. Such WB, when transplanted into rats, was remodelled into vascularized bone tissue. Taken together, our data lead to the assumption that WB samples, fabricated by DPSCs, constitute a noteworthy tool and do not need the use of scaffolds, and therefore they are ready for customized regeneration.


Bone Substitutes , Dental Pulp/cytology , Stem Cells/cytology , Tissue Engineering/methods , Adult , Animals , Bone Transplantation/methods , Calcification, Physiologic/physiology , Cell Differentiation/physiology , Cell Proliferation , Cell Separation/methods , Cells, Cultured , Chemotaxis , Humans , Mice, Nude , Neovascularization, Physiologic/physiology , Osteocalcin/metabolism , Osteogenesis/physiology , X-Ray Microtomography/methods , Young Adult
19.
Cell Death Dis ; 8(1): e2568, 2017 01 19.
Article En | MEDLINE | ID: mdl-28102844

Recent studies showed that mesenchymal stem cells derived from adipose tissue can promote tumour progression, raising some concerns regarding their use in regenerative medicine. In this context, we co-cultured either SAOS2 osteosarcoma or MCF7 breast cancer cells with human adipose stem cells (hASCs), in order to evaluate potential effects of cancer cells on hASCs differentiation, in vitro and in vivo. In this study we observed that both SAOS2 and MCF7 cell lines induced an increase in hASCs proliferation, compared to hASCs alone, but, surprisingly, neither changes in the expression of CD90, CD29, CD324 and vimentin, nor variations in the Twist and Slug mRNAs were detectable. Noteworthy, SAOS2 and MCF7 cells induced in hASCs an upregulation of CD34 expression and stemness genes, including OCT3/4, Nanog, Sox2 and leptin, and a decrease in angiogenic factors, including CD31, PDGFα, PDGFRα, PDGFRß and VEGF. SMAD and pSMAD2/3 increased only in hASCs alone. After 21 days of co-culture, hASCs differentiated both in adipocytes and endothelial cells. Moreover, co-injection of MCF7 cells with hASCs led to the formation of a highly vascularized tumour. Taken together our findings suggest that mesenchymal stem cells, under tumour cell induction, do not differentiate in vitro or facilitate the angiogenesis of the tumour in vivo, thus opening interesting new scenarios in the relationship between cancer and stem cells. These findings may also lead to greater caution, when managing autologous fat grafts in cancer patients.


Cell Differentiation/genetics , Cell Proliferation/genetics , Mesenchymal Stem Cells/cytology , Neovascularization, Pathologic/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cell Differentiation/drug effects , Coculture Techniques , Endothelial Cells/cytology , Flow Cytometry , Humans , MCF-7 Cells , Mesenchymal Stem Cells/metabolism , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology
20.
Front Physiol ; 7: 354, 2016.
Article En | MEDLINE | ID: mdl-27594842

Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact.

...